Web of Things:
W3C Vision & Roadmap on IoT Standardizations
Lead the Web to Its Full Potential

Anyone
Anytime
Anywhere
Any Device
Global Presence of W3C
A NEW WAVE OF TRANSFORMATIONS
We Build Royalty-Free Standards!

Free Web Standards for All!
Process for W3C Recommendations

- Working Draft
- Last Call Working Draft
- Candidate Recommendation
- Proposed Recommendation
- Proposed Edited Recommendation
- Rescinded Recommendation

Flow:
- Working Draft → Last Call Working Draft
- Last Call Working Draft → Candidate Recommendation
- Candidate Recommendation → Proposed Recommendation
- Proposed Recommendation → Proposed Edited Recommendation
- Proposed Edited Recommendation → Rescinded Recommendation
Many Potential IoT Application Areas

Each Evolving Rich Capabilities!

- Smart Homes
- Wearables
- Healthcare
- Power & Environment
- Smart Cities
- Manufacturing
The Internet of Things

• Still very immature, but with massive potential
• Lack of interoperability at the application level
 – Data silos are holding back the potential
• Open or closed system?
 – Closed systems incentive: control
 – Open systems prompt: reduced costs and increased market size
 – Re-prise of “the Web”
Bridging the Silos

Isolated IoT products create data silos
- Vendors use fixed cloud address for devices to upload data to
- Incompatible protocols, formats and data models

Silos hinder creation of services that combine different data
- How to enable easy integration of data sources?

The Web is the framework that offers a unifying approach:
- For simplifying application development across many platforms
- For metadata as a basis for discovery, interoperability, and open markets of services
The IoT Standardization Challenge
The Web of Things

Diversity Applications

Internet of Things: Connectivity

IEEE 802.15.4 Ethernet Wi-Fi Bluetooth LoRa
Then, the Web!

- Web is a network of **resources**
 - Resource is an abstract concept
 - Resource need to be represented, with multiple approaches
 - Resource can be operated with open protocols
 - URI is the unique identifier of a resource

- https://www.w3.org/TR/webarch/
Then, the Web!

The Web is fueling a transition from costly monolithic software to open markets of apps, with introducing Thing as another Resource.

Provide Resource Abstractions on the Web

Bridges & Interoperability

Reducing Complexity & Cost

Extensive Semantics to support automation
Why is Semantics Important?

What is the relevance to digital automation?

- Shared **vocabularies** for entities and their relationships
- Describing the software objects that stand for physical or abstract “things”
- Intelligent **Discovery**: When searching for services with a given semantics
- **Workflow & Automation**: To facilitate the design of service compositions
- Optimal planning for flexible production of given products

W3C Semantic Web Standards Stack
WoT: Where the Web meets IoT

Diversity Applications

Web of Things

Internet of Things: Connectivity

IEEE 802.15.4 Ethernet Wi-Fi Bluetooth LoRa
Communications Stack with A Clean Separation of Concerns

<table>
<thead>
<tr>
<th>Application</th>
<th>Scripts that define thing behaviour in terms of their properties, actions and events, using APIs for control of sensor and actuator hardware</th>
</tr>
</thead>
<tbody>
<tr>
<td>Things</td>
<td>Software objects that hold their state Abstract thing to thing messages Semantics and Metadata, Data models and Data</td>
</tr>
<tr>
<td>Transfer</td>
<td>Bindings of abstract messages to mechanisms provided by each protocol, including choice of communication pattern, e.g. pull, push, pub-sub, peer to peer, etc.</td>
</tr>
<tr>
<td>Transport</td>
<td>REST based protocols, e.g. HTTP, CoAP Pub-Sub protocols, e.g. MQTT, XMPP Others, including non IP transports, e.g. Bluetooth</td>
</tr>
<tr>
<td>Network</td>
<td>Underlying communication technology with support for exchange of simple messages (packets) Many technologies designed for different requirements</td>
</tr>
</tbody>
</table>

Application Developer (WoT focus)

Platform Developer (IoT focus)
The Web of Things: Basic Ideas at W3C

• Making life easier for application developers by

0. Leveraging the existing comm protocols
1. Providing a simple scripting model
 – Things standing for physical and abstract entities
 – Things as software objects with properties, actions and events
 – Applications scripts decoupled from underlying protocols which can be selected according to need
 – Based upon rich metadata

2. Server creates a software object (The Thing) based upon the thing's description
 – What properties, actions and events does it have?
The Things: An Abstraction

Applications act on software objects that stand for things
- Local “things”
- Remote “things”

Rich descriptions for every “thing”
- Data models, semantics, metadata
- Ontologies that describe “things”

Things don’t need to be connected
- Abstract entities and unconnected physical objects
Metadata as key to Platform of Platforms

• Different platforms using different technology standards, different protocols and different data formats
• Web of Things as abstraction layer over these platforms
• Application logic decoupled from the underlying platforms
• Servers rely on rich metadata to communicate
One Level Deeper on Horizontal Metadata

Core metadata applicable across application domains

Thing descriptions
- Links to thing semantics
- Data models and relationships between things
- Dependencies and version management
- Discovery and provisioning
- Bindings to APIs and protocols

Security related metadata
- Security practices
- Mutual authentication
- Access control
- Terms and conditions - relationship to “Liability”
- Payments
- Trust and Identity Verification
- Privacy and Provenance
- Safety, Compliance and Resilience

Communication related metadata
- Protocols and ports
- Data formats and encodings
- Multiplexing and buffering of data
- Efficient use of protocols
Thing Descriptions

Server uses URI for a thing to download its description and create a local proxy object for use by scripts

- Door
  ```json
  {  
    “events” : {  
      “bell”: null,  
      “key”: {  
        “valid” : “boolean”  
      }  
    },  
    “properties” : {  
      “is_open” : “boolean”  
    },  
    “actions” : {  
      “unlock” : null  
    }  
  }
  ```

- Light switch
  ```json
  {  
    “properties” : {  
      “on” : {  
        “type” : “boolean”,  
        “writable” : true  
      }  
    }  
  }
  ```

Vocabulary context defines bindings of core vocabulary to URIs for RDF nodes. Data models may be defined explicitly or by reference to an external definition.
Thing as Agent

- Thing description

```json
{
    "properties": {
        "door": {
            "type": "thing",
            "uri": "door12",
        },
        "light": {
            "type": "thing",
            "uri": "switch12"
        }
    }
}
```

- It's behaviour

```javascript
// invoked when service starts

document.start() {
    door.observe("key", unlock);
}

document.unlock(key) {
    if (key.valid) {
        door.unlock();
        light.on = true;
    }
}
```

This "thing" is an agent that is bound to a specific door and light switch. It unlocks the door and turns on the light when a valid key is presented.
Horizontal and Vertical Metadata Vocabularies

Industry specific groups are in best position to define vocabularies for each vertical

W3C core metadata vocabularies used across application domains
Enabled by Semantics, Metadata and Data Models

Discovery of services
- The benefits of a lingua franca, and its limitations

Composition of services
- From different vendors for an open market of services

Monetization of services
- Support for a wide variety of models

Security, privacy, safety, compliance, trust, resilience

Scaling on multiple dimensions
- From microcontrollers to massive cloud-based server farms
WoT Activities in W3C

June 2014

1st WoT Workshop

- W3C Launch the WoT Interest Group

Jan 2015

W3C WoT Community Group

- Provides an informal, pre-standards discussion forum to research, prototype, and create working systems for the Web of Things.

W3C WoT Interest Group

- Provides a forum for technical discussions to identify use cases and requirements for open markets of applications and services based upon the role of Web technologies for a combination of the Internet of Things (IoT) with the Web of data.

W3C WoT IG: Targeting at:

- Discovery
- Scripting APIs
- Security & Privacy
- Thing Description
WoT Activities in W3C

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1st WoT Workshop</td>
<td>W3C Launch</td>
<td>WoT IG F2F</td>
<td>WoT IG F2F</td>
<td>IIoT World</td>
<td>W3C Launch</td>
</tr>
<tr>
<td></td>
<td>the WoT Interest Group</td>
<td>Montreal, Canada</td>
<td>Beijing, China</td>
<td>Berlin</td>
<td>the WoT Working Group</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Open IoT Summit</td>
<td></td>
<td>2016-2018</td>
</tr>
</tbody>
</table>

W3C WoT Working Group
chartered to develop cross platforms standards for thing descriptions and APIs, as well as collaborating with external groups on support for particular IoT platforms.

Homepage: https://www.w3.org/2016/12/wot-wg-2016.html

Scope Summary

Thing Description:
Semantic vocabularies for describing the data and interaction models exposed to applications, the choice of communications patterns provided by protocols, and serialization formats suitable for processing on resource-constrained devices and transmission over constrained networks.

Scripting API:
Platform-independent application-facing API for Thing-to-Thing interaction and Thing lifecycle management.

Binding Templates:
Example mappings from the abstract messages to specific common platforms and protocols in collaboration with the corresponding organizations.

Security and Privacy:
Cross-cutting policies and mechanisms integrated into the other building blocks to describe and implement security and privacy policies to enable secure and safe interaction across different IoT platforms.
Roadmap: Deliverables of W3C WoT WG

• Normative Specifications
 – WoT Architecture (in 12 months)
 – WoT Thing Description (in 22 months)
 – WoT Scripting APIs (in 22 months)

• Informative Specifications
 – WoT Binding Templates

• Other Deliverables
 – WoT Test Cases
Referenced Architecture for WoT

- Thing Images in the Cloud
- Hub
- Scripting APIs For app developers
- Semantic Model
- Web Access
- Web Browser
- Compatible to existing IoT Devices
- Thing to Thing Communication
- Thing Description

Web Access

Semantic Model

Compatible to existing IoT Devices

Thing Description

WoT Servient

Hub

Thing to Thing Communication

WoT Servient

Scripting APIs For app developers

Thing Images in the Cloud

Web Access

Semantic Model

Compatible to existing IoT Devices

Thing Description

WoT Servient

Hub

Thing to Thing Communication

WoT Servient

Scripting APIs For app developers

Thing Images in the Cloud

Web Access

Semantic Model

Compatible to existing IoT Devices

Thing Description

WoT Servient

Hub

Thing to Thing Communication

WoT Servient

Scripting APIs For app developers

Thing Images in the Cloud

Web Access

Semantic Model

Compatible to existing IoT Devices

Thing Description

WoT Servient

Hub

Thing to Thing Communication

WoT Servient

Scripting APIs For app developers

Thing Images in the Cloud

Web Access

Semantic Model

Compatible to existing IoT Devices

Thing Description

WoT Servient

Hub

Thing to Thing Communication

WoT Servient

Scripting APIs For app developers
WoT Interfaces, Servients & Protocol Bindings

- WoT Interface is an network accessible interface of servient
- Servient hosts multiple Things with URI as resource identifier
How to implement a WoT Servient?

→ Abstract WoT Servient Model
Interoperability Demo & Test: Plugfest

- Coordinated by WoT IG
Global Participation
W3C Activities in WoT

Peer Organizations

- IETF Authentication and Authorization for Constrained Environments (ace) Working Group
- IETF Core Working Group
- OneM2M
- OPC Foundation Open Connectivity Foundation
- IPSO Alliance
- GSMA
- Industrial Internet Consortium
- IoT Security Foundation
- Plattform Industrie 4.0

W3C Groups

- Web of Things Interest Group
- Accessible Platform Architectures Working Group
- Device and Sensors Working Group
- Efficient XML Interchange Working Group
- Spatial Data on the Web Working Group
- Web and Automotive Business & Working Groups
- TV Control Working Group
Enables An Open Market of Things

Apps for connecting suppliers and consumers
- Analogous to marketplaces of apps for smart phones
- SME’s can script apps to suit their specific needs

Marketplace features
- Discovery, reviews, recommendations, ranking/reputation
- Dynamic composition to match given requirements
- Automated negotiation of contracts to save time and money

Lifecycle support
- Developing, testing, publishing, vetting, updates, obsolescence
Thank You!

Join W3C to Build a Great Web of Things!

• Acknowledgements:
 – The contents of the slides is reproduced from Jeff Jaffe, Dave Ragget, Philip Hoschka, Yingying Chen, Angel Li, and other materials from W3C global team and WoT IG/WG homepage
 – Thanks goes to Angel Li for generating the initial draft of this slides.